A special engineered high quality sheet made of
expanded natural graphite eoil impregnated with an anti-

Excellent leakage performance

Complies to Low Fugitive Emission regulation
(TTA-LLut Vol 24400)

Excellent thermo-mechanical performance
cycling condifitions

- Suitable for corrosive media
- Complies to Low Fugitive Emission regulations - Complies to Fire Safe Test API

\cdot RL

fire safe product
Complies to Fire Safe Test DVGW VP 401
The state of the gasket fiter opening the joint also
shows the superbo thermo mechnaical propertise and

Complies to Fire Safe Test API 6FB

Outstanding anti-stick properties
The unique composition of Grailit $\oplus 1 Q$ results in in out-
standing anti-stick properties. ick properties
Removing a stuck gasket from the flange surface can
be a teefious and labour intensive task that can end up damaging the flange surfaces. The amount of time spen
on cleaning flanges can be significant, and in many services, the plant must remain off-line longer while the yaskets are removed, resulting in a loss of production. By using Grafiti Q Q we enable you to optimize you
resources and shorten your maintenance duration.

MADE IN EU

\mathbf{M}	
\mathbf{W} ILHELMSEN A/s	GRAFILIT® ${ }^{\circledR} \mid Q$

p-t diagrams

- General suitability - Appropriate measures ensure maximum performance for joint design and gasket installation.
\square Limited suitability - Technical consultation is mandatory

P-T diagrams indicate the maximum allowed combination of internal pressure and service temperature which can be applied simultaneously for a given gasket depending on its material type, thickness, size and tightness class. Given the variety of gasket applications and service conditions, these values should only be regarded as guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

CHEMICAL RESISTANCE CHART

The recommendations made here are intended as a guideline for the selection of a suitable gasket type. As the function and durability of products are dependent upon a number of factors, the data may not be used to support any warranty claims.
Legend: + Recommended, ?Recommendation depends on operating conditions, = Not recommended.

Acetamide	+	Butyric acid	+	Formic acid, 85\%	$?$	N-Methyl-pyrrolidone (NMP)	+	Silicones (oil/grease)	$+$
Acetic acid, 10\%	+	Calcium chloride	$?$	Formic acid, 100\%	?	Milk	+	Soaps	+
Acetic acid, 100\% (Glacial)	$?$	Calcium hydroxide	+	Freon-12 (R-12)	+	Mineral oil (ASTM no.1)	+	Sodium aluminate	+
Acetone	+	Carbon dioxide (gas)	+	Freon-134a (R-134a)	+	Motor oil	+	Sodium bicarbonate	+
Acetonitrile	+	Carbon monoxide (gas)	+	Freon-22 (R-22)	+	Naphtha	+	Sodium bisulite	+
Acetylene (gas)	+	Cellosolve	+	Fruit juices	+	Nitric acid, 10\%	?	Sodium carbonate	+
Acid chlorides	$?$	Chlorine lgas)	?	Fuel oil	+	Nitric acid, 65\%	?	Sodium chloride	+
Acrylic acid	+	Chlorine lin water)	-	Gasoline	+	Nitrobenzene	+	Sodium cyanide	+
Acrylonitrile	+	Chlorobenzene	+	Gelatin	+	Nitrogen (gas)	+	Sodium hydroxide	+
Adipic acid	+	Chloroform	+	Glycerine (Glycerol)	+	Nitrous gases (NOx)	?	Sodium hypochlorite (Bleach)	-
Air (gas)	+	Chloroprene	+	Glycols	+	Octane	+	Sodium silicate (Water glass)	+
Alcohols	+	Chlorosilanes	$?$	Helium (gas)	+	Oils (Essential)	+	Sodium sulfate	+
Aldehydes	+	Chromic acid	-	Heptane	+	Oils (Vegetable)	+	Sodium sulide	?
Alum	?	Citric acid	?	Hydraulic oil (Glycol based)	+	Oleic acid	+	Starch	+
Aluminium acetate	$?$	Copper acetate	+	Hydraulic oil (Mineral type)	+	Oleum (Sulfuric acid, fuming)	-	Steam	+
Aluminium chlorate	$?$	Copper sulfate	+	Hydraulic oil (Phosphate ester based)	+	Oxalic acid	?	Stearic acid	+
Aluminium chloride	-	Creosote	+	Hydrazine	+	Oxygen (gas)	+	Styrene	+
Aluminium sulfate	+	Cresols (Cresylic acid)	+	Hydrocarbons	+	Palmitic acid	+	Sugars	+
Amines	+	Cyclohexane	+	Hydrochloric acid, 10\%	-	Parafin oil	+	Sulfur	+
Ammonia (gas)	+	Cyclohexanol	+	Hydrochloric acid, 37\%	-	Pentane	+	Sulfur dioxide (gas)	+
Ammonium bicarbonate	+	Cyclohexanone	+	Hydroluoric acid, 10\%	-	Perchloroethylene	+	Sulfuric acid, 20\%	-
Ammonium chloride	$?$	Decalin	+	Hydroluoric acid, 48\%	-	Petroleum (Crude oil)	+	Sulfuric acid, 98\%	-
Ammonium hydroxide	+	Dextrin	+	Hydrogen (gas)	+	Phenol (Carbolic acid)	+	Sulfuryl chloride	-
Amyl acetate	+	Dibenzyl ether	+	Iron sulfate	+	Phosphoric acid, 40\%	?	Tar	+
Anhydrides	+	Dibutyl phthalate	+	Isobutane (gas)	+	Phosphoric acid, 85\%	?	Tartaric acid	?
Aniline	+	Dimethylacetamide (DMA)	+	Isooctane	+	Phthalic acid	+	Tetrahydrofuran (THF)	+
Anisole	+	Dimethylformamide (DMF)	+	Isoprene	+	Potassium acetate	+	Titanium tetrachloride	-
Argon (gas)	+	Dioxane	+	Isopropyl alcohol (Isopropanol)	+	Potassium bicarbonate	+	Toluene	+
Asphalt	+	Diphyl (Dowtherm A)	+	Kerosene	+	Potassium carbonate	+	2,4-Toluenediisocyanate	+
Barium chloride	$?$	Esters	+	Ketones	+	Potassium chloride	+	Transformer oil (Mineral type)	+
Benzaldehyde	+	Ethane (gas)	+	Lactic acid	?	Potassium cyanide	+	Trichloroethylene	+
Benzene	+	Ethers	+	Lead acetate	+	Potassium dichromate	$?$	Vinegar	+
Benzoic acid	+	Ethyl acetate	+	Lead arsenate	+	Potassium hydroxide	+	Vinyl chloride (gas)	+
Bio-diesel	+	Ethyl alcohol (Ethanol)	+	Magnesium sulfate	+	Potassium iodide	+	Vinylidene chloride	+
Bio-ethanol	+	Ethyl cellulose	+	Maleic acid	+	Potassium nitrate	+	Water	+
Black liquor	$?$	Ethyl chloride (gas)	+	Malic acid	?	Potassium permanganate	$?$	White spirits	+
Borax	+	Ethylene (gas)	+	Methane lgas)	+	Propane (gas)	+	Xylenes	+
Boric acid	+	Ethylene glycol	+	Methyl alcohol (Methanol)	+	Propylene (gas)	+	Xylenol	+
Butadiene (gas)	+	Formaldehyde (Formalin)	+	Methyl chloride (gas)	+	Pyridine	+	Zinc sulfate	+
Butane (gas)	+	Formamide	+	Methylene dichloride	+	Salicylic acid	+		
Butyl alcohol (Butanol)	+	Formic acid, 10\%	+	Methyl ethyl ketone (MEK)	+	Seawater/brine	?		

All information and data quoted are based upon years of experience in the production and operation of sealing elements. This data may not be used
to support any warranty claims. With its publication this latest edition supersedes all previous issues and is subject to change without further notice.

